content

williamhill官网 :千古绝技 中国古代数学家的割圆术

 2005-11-16 00:11 桌面版 正體 打赏 0
“圜,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的这个公式。为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。



根据刘徽的记载,在刘徽之前,人们求证圆面积公式时,是用圆内接正十二边形的面积来代替圆面积。应用出入相补原理,将圆内接正十二边形拼补成一个长方形,借用长方形的面积公式来论证《九章算术》的圆面积公式。刘徽指出,这个长方形是以圆内接正六边形周长的一半作为长,以圆半径作为高的长方形,它的面积是圆内接正十二边形的面积。这种论证“合径率一而弧周率三也”,即后来常说的“周三径一”,当然不严密。他认为,圆内接正多边形的面积与圆面积都有一个差,用有限次数的分割、拼补,是无法证明《九章算术》的圆面积公式的。因此刘徽大胆地将极限思想和无穷小分割引入了数学证明。他从圆内接正六边形开始割圆,“割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体,而无所失矣。”也就是说将圆内接正多边形的边数不断加倍,则它们与圆面积的差就越来越小,而当边数不能再加的时候,圆内接正多边形的面积的极限就是圆面积。刘徽考察了内接多边形的面积,也就是它的“幂”,同时提出了“差幂”的概念。“差幂” 是后一次与前一次割圆的差值,可以用图中阴影部分三角形的面积来表示。同时,它与两个小黄三角形的面积和相等。刘徽指出,在用圆内接正多边形逼近圆面积的过程中,圆半径在正多边形与圆之间有一段余径。以余径乘正多边形的边长,即2倍的“差幂”,加到这个正多边形上,其面积则大于圆面积。这是圆面积的一个上界序列。刘徽认为,当圆内接正多边形与圆是合体的极限状态时,“则表无余径。表无余径,则幂不外出矣。”就是说,余径消失了,余径的长方形也就不存在了。因而,圆面积的这个上界序列的极限也是圆面积。于是内外两侧序列都趋向于同一数值,即,圆面积。  



郭书春(中国科学院自然科学史所研究员):

在证明这个圆面积公式的时候有两个重要思想,一个就是我们现在所讲的极限思想。那么第二步,更关键的一步,他把与圆周合体的这个正多边形,就是不可再割的这个正多边形,进行无穷小分割,再分割成无穷多个以圆心为顶点,以多边形每边为底的无穷多个小等腰三角形,这个底乘半径为小三角形面积的两倍,把所有这些底乘半径加起来,应该是圆面积的两倍。那么就等于圆周长乘半径等于两个圆面积。所以一个圆面积等于半周乘半径,所以刘徽说故半周乘半径而为圆幂。那么他的原话就是“以一面乘半径,觚而裁之,每辄自倍。故以半周乘半径而为圆幂”。最后完全证明了圆面积公式,证明了圆面积公式,也就证明了“周三径一”的不精确。随着圆面积公式的证明,刘徽也创造出了求圆周率精确近似值的科学程序。在刘徽之前古希腊数学家阿基米德也曾研究过求解圆周率的问题。




李文林(中国科学院数学与系统科学研究院研究员):

阿基米德算圆周率的方法,根据记载,他是通过圆内接正多边形的边长和圆外切正多边形的边长,从正六边形开始加倍进行来逼近。

在考虑圆的问题时,除了考察内接多边形以外,又考察外切多边形。是历来数学家们常常使用的做法,似乎已约定俗成。而刘徽独辟蹊径,他利用“幂”和“差幂”来代替对圆的外切近似,巧妙地避开了对外切多边形的计算,在计算圆面积的过程中收到了事半功倍的效果。刘徽用“差幂”对割到192边形的数据进行再加工,通过简单的运算,竟可以得到3072多边形的高精度结果,附加的计算量几乎可以忽略不计,这一点可谓是割圆术中最精彩的部分之一。正是基于这一运算,刘徽得出的圆周率,为3.1416,计算精度超过了阿基米德。

圆面积的计算非常具有实用价值,而圆面积公式的证明则是一项抽象的数学推理论证过程。那么《割圆术》又是在怎样的背景下产生的呢?

郭书春(中国科学院自然科学史所研究员):

刘徽所处的时代是社会上军阀割据,特别当时是魏、蜀、吴三国割据,那么在这个时候中国的社会、政治、经济发生了极大的变化,特别是思想界,文人学士们互相进行辩难,所以当时成为辩难之风,一帮文人学士找到一块,就像我们大专辩论会那样,一个正方一个反方,提出一个命题来大家互相辩论,在辩论的时候人们就要研究讨论关于辩论的技术,思维的规律,所以在这一段人们的思想解放,应该说是在春秋战国之后没有过的,这时人们对思维规律研究特别发达,有人认为这时人们的抽象思维能力远远超过春秋战国。

刘徽在《九章算术注》的自序中表明,把探究数学的根源,作为自己从事数学研究的最高任务。他注《九章算术》的宗旨就是“析理以辞,解体用图”。“析理” 就是当时学者们互相辩难的代名词。刘徽通过析数学之理,建立了中国传统数学的理论体系。众所周知,古希腊数学取得了非常高的成就,建立了严密的演绎体系。然而,刘徽的 “割圆术”却在人类历史上首次将极限和无穷小分割引入数学证明,成为人类文明史中不朽的篇章。

--版权所有,任何形式转载需williamhill官网 授权许可。 严禁建立镜像网站.
本文短网址:


【诚征荣誉会员】溪流能够汇成大海,小善可以成就大爱。我们向全球华人诚意征集万名荣誉会员:每位荣誉会员每年只需支付一份订阅费用,成为《williamhill官网 》网站的荣誉会员,就可以助力我们突破审查与封锁,向至少10000位中国大陆同胞奉上独立真实的关键资讯,在危难时刻向他们发出预警,救他们于大瘟疫与其它社会危难之中。

分享到:

看完这篇文章觉得

评论

畅所欲言,各抒己见,理性交流,拒绝谩骂。

留言分页:
分页:


Top
x
我们和我们的合作伙伴在我们的网站上使用Cookie等技术来个性化内容和广告并分析我们的流量。点击下方同意在网络上使用此技术。您要使用我们网站服务就需要接受此条款。 详细隐私条款. 同意